High Specific Impulse Electrospray Explorer for Deep Space (HiSPEED)

Paulo Lozano (MIT) plozano@mit.edu

Acknowledgements

Thanks to NASA for their support:

- Swati Mohan (Collaborator JPL)
- Jim Crockell (STP)
- Sasha Weston (STP)

MIT Team:

- Oliver Jia-Richards
- Gustav Pettersson

HiSPEED: Enabling a Deep Space Revolution

- Today, deep space missions are rare and expensive
- SmallSats' lower costs would
 - Increase science return
 - Empower more players
 - Develop future technologies
 - Diversify exploration
- CubeSat technology almost there
 - Deep space systems survival
 - Capable Instrumentation
- HiSPEED to unlock propulsion

HiSPEED Components and Team

Propulsion (MIT)

Staged Ionic-Liquid Electrospray

Missions (MIT/JPL)

Deep-Space Trajectories and Proximity Operations

Controls (JLP)

Small Satellite
Dynamics Testbed

Systems (JPL)
Team Xc Study

Staged Electrosprays Fill the Propulsion Gap

Deep-space (asteroid belt) payload vs delta-V for a 6U CubeSat.

Ionic-Liquid Electrosprays are Fundamentally Efficient

Staging Principle

- Several sets of thrusters overcomes lifetime limit
- Fundamental benefits of technology preserved
 - High specific impulse
 - High efficiency
 - Several km/s ΔV
- Enabled with present technology
 - Thrusters
 - PPU
 - Staging (HiSPEED and STEP-1)

32 electrospray thrusters

- Compatible with 3U form factor
- 1 mN thrust
- 1000 s specific impulse
- 6 W power requirement
- 500 hr operational lifetime

Scalable to larger spacecraft sizes

Laboratory Demonstration

Demonstrate the prototype hardware for a staging system

- 1. Staging mechanism:
 - Connects successive stages together
 - Ejects spent stages
 - Operates with a fuse wire
- 2. Routing mechanism:
 - Routes control signals to the active stage
 - Allows thruster electronics to remain "stage blind"

Feasibility Study

Conducted through a study by the JPL Team Xc Concurrent Design Center

Mission from geostationary orbit around Earth to the near-Earth asteroid 2010 UE51

Design closes for both current and future thruster

performance metrics

STEP-1 – Staged Electrospray Pathfinder 1

Before embarking on a deep-space mission we will fly a technology demo

STEP-1 Demonstrates:

- → Last major technology step for HiSPEED
- → Propulsion scaling and modularity
- → Trajectory and attitude control
- → Core technology efficiency
- → Propellant microvalve operation

STEP-1 Provides:

- → Thruster flight qualification
- → Staging flight qualification
- → Student training in design/build/test

STEP-1 was selected for NASA CSLI

STEP-1 Design and Operations

ΔV ~ 10 m/s per stage in STEP-1 scales to HiSPEED with ΔV ~ 1 km/s per stage and ~60% efficiency

Thruster (~1cm)

00

- 1. Deployment to low-Earth orbit
- 2. Reduce orbit and stage demo
- 3. Trajectory and attitude control

Interstage

3-Stage electrospray propulsion

Flight-heritage PPU

High frame rate recording

STEP-1 Team and Status

Principal Inv.

Prof. Paulo Lozano MIT AeroAstro - SPL

Dedicated Lab Space

PhD Students

Gustav Pettersson Oliver Jia-Richards

Undergrads

Over 5 involved in early stage, many more soon!

Review Team

NASA JPL MIT Lincoln Labs MIT Haystack Irvine CubeSat KTH Stockholm

Payload Development ¹⁸

Contact: Paulo Lozano (plozano@mit.edu)

Thank You

